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Abstract

Carr–Purcell–Meiboom–Gill (CPMG) measurements are the primary nuclear magnetic resonance (NMR) technique used for

evaluating formation properties and reservoir fluid properties in the well logging industry and laboratory sample analysis. The

estimation of bulk volume irreducible (BVI), permeability, and fluid type relies on the accurate interpretation of the spin–spin

relaxation time ðT2Þ distribution. The interpretation is complicated when spin�s self-diffusion in an inhomogeneous field and re-

stricted geometry becomes dominant. The combined effects of field gradient, diffusion, and a restricted geometry are not easily

evaluated analytically. We used a numerical method to evaluate the dependence of the free and restricted diffusion on the system

parameters in the absence of surface relaxation, which usually can be neglected for the non-wetting fluids (e.g., oil or gas). The

parameter space that defines the relaxation process is reduced to two dimensionless groups: D� and s�. Three relaxation regimes: free

diffusion, localization, and motionally averaging regimes are identified in the ðlog10 D�; log10 s�Þ domain. The hypothesis that the

normalized magnetization, M̂M�, relaxes as a single exponential with a constant dimensionless relaxation time T �
2 is justified for most

regions of the parameter space. The numerical simulation results are compared with the analytical solutions from the contour plots

of T �
2 . The locations of the boundaries between different relaxation regimes, derived from equalizing length scales, are challenged by

observed discrepancies between numerical and analytical solutions. After adjustment of boundaries by equalizing T �
2 , numerical

simulation result and analytical solution match each other for every relaxation regime. The parameters, fluid diffusivity and pore

length, can be estimated from analytical solutions in the free diffusion and motionally averaging regimes, respectively. Estimation of

the parameters near the boundaries of the regimes may require numerical simulation.

� 2003 Elsevier Science (USA). All rights reserved.
1. Introduction

Carr–Purcell–Meiboom–Gill (CPMG) pulse se-

quence, as shown in Fig. 1, is widely used to measure

spin–spin relaxation time T2. After the initial p=2 (or 90�)
pulse, spins at different locations rotate around the z axis
(the same axis as the static magnetic field B0) at differing

speeds due to the field inhomogeneity. A p (or 180�) pulse
is applied (around the rotating imaginary axis) at time s
to refocus the spins, which leads to the formation of the

‘‘Hahn’’ echo at time 2s. Then further applications of p
pulses at 3s; 5s; . . ., the odd multiples of s, lead to the

formation of the CPMG echoes at 4s; 6s; . . ., the even

multiples of s. Only when spins are not diffusing, can
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CPMG completely compensate the dephasing of spins
due to the local magnetic field inhomogeneity.

Many researchers studied the decay of the CPMG spin

echo amplitude resulting from the combined effects of

field gradients, diffusion, and restricted geometries [1–5].

H€uurlimann [6] showed that the pores can be classified

into large or small pores, by comparing the pore size toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0=cDvB0

p
(D0 is the molecular self-diffusion coeffi-

cient. c is the gyromagnetic ratio. Dv is the magnetic
susceptibility difference between pore fluid and rock

matrix. B0 is the static magnetic field). Only the contri-

butions from the large pores show a significant increase

of the CPMG decay rate with echo spacing TE.

Sen et al. [7] studied the influence of restricted ge-

ometry on CPMG spin echo response of the magneti-

zation of spins diffusing in a constant magnetic field

gradient. Depending on three main length scales: LD
reserved.
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Nomenclature
a1 a numerical constant in analytical Eq. (9)

A m� m tri-diagonal matrix in numerical simulation

B m� m tri-diagonal matrix in numerical simulation

B0 static magnetic field

Bz the z component of magnetic field

BVI bulk volume irreducible

C a numerical constant in analytical Eq. (8), which

depends on the echo number n
C1 a numerical constant in analytical Eq. (9)

C2 a numerical constant in analytical Eq. (9)

CPMG Carr–Purcell–Meiboom–Gill

Dv magnetic susceptibility difference between pore

fluid and rock matrix

D0 molecular self-diffusion coefficient

D� dimensionless group, D� ¼ D0

cgL3
S

g constant magnetic field gradient

G tool gradient

c gyromagnetic ratio

h same as Dx�

i imaginary unit

j grid point index in numerical simulation

LD diffusion length

Lg dephasing length

LS system length

m the number of grid blocks used in the

numerical simulation for the 1-D pore

M magnetization, expressed as a complex

variable, M ¼ Mx þ iMy

M̂M magnetization with the precession at Larmor

frequency and the bulk relaxation factored out

M̂M0 M̂M at time zero

M̂M� normalized magnetization, M̂M� ¼ M̂M
M̂M0

n echo number

N time step index in numerical simulation

Ns the number of micro time steps in each s� (or s)
interval

nmr nuclear magnetic resonance

p a numerical constant in analytical Eq. (9), which

depends on the echo number n
p a radiofrequency pulse that lasts to tip spins

by 180�
p� at time immediately before a p pulse

pþ at time immediately after a p pulse

h coefficient in Crank–Nicholson finite

difference method

t time

t0 characteristic time or dephasing time, t0 ¼ 1
cgLS

t� dimensionless time, t� ¼ t
t0

Dt� dimensionless time step, Dt� ¼ t�Nþ1 � t�N
T2 spin–spin relaxation time

T2B bulk spin–spin relaxation time

T �
2 dimensionless spin–spin relaxation time, T �

2 ¼ T2
t0

s half echo spacing

s� dimensionless group, s� ¼ scgLS

U time evolution matrix, U ¼ A�1B
V1 defined as V1 ¼ UNs

V2 defined as V2 ¼ �ðUNsÞ
�xx0 Larmor frequency

x, y, z Cartesian coordinates

x� dimensionless x, x� ¼ x
LS

Dx� dimensionless space between grid points

82 G.Q. Zhang, G.J. Hirasaki / Journal of Magnetic Resonance 163 (2003) 81–91
(diffusion length), Lg (dephasing length), and LS (system

length), three main regimes of decay have been identi-

fied: free diffusion, localization, and motionally aver-

aging regimes. They conducted numerical simulations to

investigate how spins pass from one regime of relaxation

to another, particularly from the localization regime to

the motionally averaging regime. In this transition, they

observed large oscillations in the CPMG signal as a
function of the echo number for certain specific values

of echo spacing and the magnetic field gradient.

In this paper, we will re-interpret the differential

equation with two dimensionless groups and conduct

numerical simulations to study the combined effects of

field gradient, diffusion, and restricted geometry on

NMR measurements.

Compared with Sen et al.�s work, instead of charac-
terizing T2 relaxation process in the domain of three

dimensional length scales: LD, Lg, and LS we propose to

study in the domain of two dimensionless groups: D�

and s� in a log–log scale. In addition, instead of studying

the relaxation process as a function of time or echo

number, we propose to use dimensionless relaxation
time, T �
2 . Thus, a single contour plot of T �

2 will suffice to

describe the whole relaxation process. All three relaxa-

tion regimes can be displayed on the ðlog10 D�; log10 s�Þ
domain. Analytical equations allow us to derive the

boundaries between adjacent relaxation regimes from

equalizing the characteristic length scales. However,

numerical simulation results challenge the validity of

these boundaries. This discrepancy prompts us to adjust
the boundaries by equalizing T �

2 of adjacent regimes.

Finally, one contour plot of T �
2 from numerical simu-

lation covers all three relaxation regimes, whereas ana-

lytical solution occupies only portion of the

ðlog10 D�; log10 s�Þ domain.
2. Numerical method

2.1. System of study

The distribution of the magnetic field gradients for

natural rock samples can be very complicated. It is the

superposition of a constant gradient applied by the



Fig. 1. CPMG pulse sequence. It begins with a 90� pulse followed by a series of 180� pulses. The first two pulses are separated by a time period s,
whereas the remaining pulses are spaced 2s apart. Echoes occur halfway between 180� pulses at 2s; 4s; . . . ; 2s � n, where n is the echo number. TE

stands for echo spacing and it equals to 2s. Spin echo amplitudes decay with the time constant T2.

Fig. 2. System of study. A 1-D pore is divided into m grid blocks with

total length LS. It is in the presence of a magnetic field with constant

gradient g.
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logging tool with a distribution of the internal field
gradients induced from the magnetic susceptibility dif-

ference between pore fluids and solid matrix [8]. Thus,

the determination of the NMR response of the magne-

tization of spins for real systems is a very difficult task.

In this paper, we will restrict ourselves to the most

fundamental yet important case, i.e., a 1-D system in a

magnetic field with constant gradient.

Therefore, as illustrated in Fig. 2, we define our system
of study as a 1-D pore (i.e., a slab) along the x (real) axis.
The pore is divided into m grid blocks, each represented

by a grid point. Also, we only consider a magnetic field

with a constant gradient, i.e., Bz ¼ B0 þ gx. Spins are free
to diffuse through the pore space.

2.2. System of equations

We can get the following equation only after a few

mathematical manipulations on the original Torrey�s
equations [9]:

oM
ot

¼ �icBzM �M
T2

þ D0r2M ; ð1Þ

where M is magnetization expressed as a complex vari-

able, M ¼ Mx þ iMy . Let M ¼ M̂M 	 expð�ix0t þ�t=
ðT2BÞÞ, then M̂M represents the magnetization with the

precession at Larmor frequency, x0 ¼ cB0, and the bulk

relaxation, T2B, factored out.

In addition, introduce normalized magnetization
M̂M� ¼ M̂M=M̂M0, where M̂M0 is the magnetization at time

zero. Then, at t ¼ 0, M̂M� ¼ 1. Hence Eq. (1) becomes:

oM̂M�

ot
¼ �icðBz � B0ÞM̂M� þ D0r2M̂M�: ð2Þ

For our system of study, i.e., a 1-D pore with a

constant gradient and self-diffusion, Eq. (2) becomes:

oM̂M�

ot
¼ �icgxM̂M� þ D0

o2M̂M�

ox2
for� LS

2
< x

<
LS

2
and t > 0: ð3Þ
Let x� ¼ x=LS, where LS is the system length and
t� ¼ t=t0. The characteristic time, t0, is also called the

dephasing time and it is defined as t0 
 1=cgLS, in unit of

time/radian. t0 represents the time it takes the spins at

x� ¼ �1=2 and x� ¼ 1=2 to dephase by 1 rad due to the

magnetic field inhomogeneity. A typical value of t0 is

1.5ms/radian (with c ¼ 2:675� 108 rad=ðTsÞ, g ¼ 25

G=cm, and LS ¼ 10lm). Thus, Eq. (3) becomes:

oM̂M�

ot�
¼ �ix�M̂M� þ D0

cgL3
S

	 o
2M̂M�

ox�2
: ð4Þ

We introduce a dimensionless group D�, defined as:

D� 
 D0

cgL3
S

¼
1

cgLS
L2
S

D0

� � ¼ \dephasing time"

\diffusion time"
:

It is the ratio of the dephasing time in an inhomo-
geneous field to the diffusion time across a pore of length

LS.
With the definition of D�, Eq. (4) becomes:

oM̂M�

ot�
¼ �ix�M̂M� þ D� o

2M̂M�

ox�2
: ð5aÞ

The initial condition is:

M̂M�ðx�; t� ¼ 0Þ ¼ 1: ð5bÞ
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We assume completely reflective pore walls, that is,
there is no surface relaxation. This assumption is usually

true for non-wetting fluids (e.g., oil or gas). Then, the

boundary condition is:

oM̂M�

ox�
¼ 0 at x� ¼ � 1

2
and

1

2
: ð5cÞ

Since CPMG pulse sequence has p pulses at odd

numbers of s: s; 3s; . . ., we introduce another dimen-
h2

Dt� þ h 	 ih2x�1 þ D�h �D�h

. . . . . . . . .

�D�h h2

Dt� þ h 	 ih2x�j þ 2D�h �D�h

. . . . . . . . .

�D�h h2

Dt� þ h 	 ih2x�m þ D�h

2
6666664

3
7777775

M̂M�Nþ1
1

M̂M�Nþ1
2

. . .

M̂M�Nþ1
m�1

M̂M�Nþ1
m

2
66666664

3
77777775

¼

h2

Dt� � ð1� hÞih2x�1 � D�ð1� hÞ D�ð1� hÞ
. . . . . . . . .

D�ð1� hÞ h2

Dt� � ð1� hÞih2x�j � 2D�ð1� hÞ D�ð1� hÞ
. . . . . . . . .

D�ð1� hÞ h2

Dt� � ð1� hÞih2x�m � D�ð1� hÞ

2
6666664

3
7777775

M̂M�N
1

M̂M�N
2

. . .

M̂M�N
m�1

M̂M�N
m

2
66666664

3
77777775
;

sionless group s�, defined as s� ¼ s
t0
¼ scgLS. Then, at

t� ¼ s�; 3s�; . . ., a p pulse is applied.

At each p pulse, the spins are rotated 180� about the y0
(rotating imaginary) axis, thus immediately after the p
pulse every spin has the same imaginary component,while

negative of the real component, as it had immediately

before the p pulse. Therefore, the effect of a p pulse can be

expressed as the negative of complex conjugate, i.e.:

M̂M�
pþ

¼ �ðM̂M�
p�
Þ; ð5dÞ

where p� and pþ stand for at time immediately before

and after a p pulse.
Thus far, the diffusion problem is completely math-

ematically formulated by the system of Eqs. (5a)–(5d).

By using dimensionless values, we have replaced di-

mensional variables: M̂M , t, and x with dimensionless

variables: M̂M�, t�, and x�. More importantly, we reduce

the number of dimensional parameters: c, g, D0, LS, M̂M0,

and s to only two dimensionless groups: D� and s�.

2.3. Finite difference method

For numerical stability and second order conver-

gence, we use Crank–Nicholson finite difference method

to solve the system of Eqs. (5a)–(5d).
In simple matrix form, Eq. (5a) combined with
boundary condition (5c) for all the grid blocks can be

expressed as:

AM̂M�Nþ1 ¼ BM̂M�N ; ð6Þ
where A and B are m� m tri-diagonal matrices and

M̂M�Nþ1 and M̂M�N are m� 1 matrices at time step t�Nþ1 and

t�N , respectively. N is the time step index in numerical

simulation, N ¼ 1; 2; . . .
Eq. (6) is fully expanded as:
where h ¼ Dx� 
 x�jþ1 � x�j ¼ 1=m, Dt� ¼ t�Nþ1 � t�N , and

h ¼ 0:5.
To save computational time, we follow the same

procedure as illustrated in Sen�s paper [7] to skip cal-

culating M̂M� at the intermediate micro time steps but

rather calculate M̂M� at echo time t� ¼ 2ns�, where n is the

echo number starting from 1.

Rewrite Eq. (6) as: M̂M�Nþ1 ¼ UM̂M�N , where U ¼ A�1B,
the time evolution matrix for a single micro time step

Dt� ¼ t�Nþ1 � t�N . Let the number of micro time steps in

each s� (or s) interval be Ns, i.e., Ns ¼ s�=Dt�. Now,

N ¼ 1; 2; . . . ;Ns. The dimensionless normalized magne-

tization immediately before the first p pulse is:

M̂M�Ns ¼ UNsM̂M�0, where M̂M�0 ¼ 1 is the initial condition.

Define V1 ¼ UNs and V2 ¼ �ðUNsÞ. As stated in the pre-

vious section, the effect of a p pulse is negative conjugate
(Eq. (5d)). We further assume that the pulse length is

infinitesimally small. Then, at t� ¼ 2s�, when the Hahn

echo forms, M̂M�2Ns ¼ UNsb�ðM̂M�NsÞc ¼ V1V2ðM̂M�0Þ. Simi-

larly, the recursive formula for all the echoes is:

M̂M�n ¼ V1V2ðM̂M�n�1Þ;
where n is the echo number starting from 1. Therefore,

the matrix V1V2 only needs to be computed once, thus

saving a lot of computational time.



G.Q. Zhang, G.J. Hirasaki / Journal of Magnetic Resonance 163 (2003) 81–91 85
It is obvious from the system of equations that CPMG
in a 1-D system with a constant gradient and self-diffu-

sion is solely governed by two dimensionless groups: D�

and s�. We choose a domain of D� (ranging from 10�4 to

102) and s� (ranging from 10�1 to 101:5), which covers the

typical combinations of the dimensional parameters: D0,

g, LS, and s that are often encountered in real systems. A

mesh grid of 121 by 121 points on the ðlog10 D�; log10 s�Þ
domain is chosen in later analysis.

To get accurate numerical simulation results, we need

to have large numbers of grid blocks and small time step

size in order to reach the acceptable levels of spatial and

time truncation errors for the whole ðlog10 D�; log10 s�Þ
domain. It is founded that 99 grid blocks and 512 micro

time steps in each s� interval are sufficient for all regions

on the ðlog10 D�; log10 s�Þ domain.

3. Numerical results

People usually study the decay of magnetization along

time scale or as a function of echo number [7]. Then

contour plots of M̂M� need to be created at a series of time

values to understand the whole relaxation process. Al-

ternatively, we express M̂M� as relaxing exponentially with
t�, characterized by a constant relaxation time T �

2 :

M̂M�ðt�Þ ¼ e
� t�

T �
2 or T �

2 ¼ �t�

ln M̂M�ðt�Þ
:

This dimensionless relaxation time, T �
2 , is defined as

the ratio of the dimensional relaxation time to the

dephasing time, i.e., T �
2 ¼ T2=t0. This T �

2 is solely due to

the diffusion relaxation mechanism. This is because the
bulk relaxation is factored out in the beginning to get M̂M
from M and in the current study, we assume there is no

surface relaxation on the pore wall.

If T �
2 determined from the numerical simulation does

not change with time, then the relaxation of magneti-

zation follows the single exponential model. Fig. 3
Fig. 3. Comparison of contour lines of T �
2 at t� ¼ 80, solid curves, and

at t� ¼ 800, dashed curves.
compares contour lines of T �
2 at two different times.

Solid curves are at t� ¼ 80, while dashed curves are at

t� ¼ 800. Except for the upper left region (due to the

branch point effect of the localization regime which will

be discussed later), the contour lines of T �
2 at these two

times overlay on each other very well. This means that

for most regions in the domain, M̂M� decays single ex-

ponentially. The significance of this finding is that now

only one single contour plot of T �
2 , no matter at what

time, is enough to characterize the whole relaxation

process.

The contour lines of T �
2 at t� ¼ 400� ð2s�minÞ ¼ 80, the

solid curves on Fig. 3, will represent the numerical sim-

ulation results referred to in the later discussion. At this

time, systems represented by the bottom line of the do-

main ðlog10 s� ¼ �1Þ form the 400th echo. Ten contour

lines of T �
2 are picked logarithmically from T �

2 ¼ 10 (fast
relaxation) to T �

2 ¼ 10; 000 (slow relaxation). They are

V-shaped over most of the ðlog10 D�; log10 s�Þ domain.
4. Relaxation regimes of the parameter space

By the way we define the system of equations, there

are only two dimensionless groups: D� and s� in the
parameter space. Whereas, in the literature [10–12],

NMR signal of nuclear magnetization due to restricted

diffusion in an inhomogeneous magnetic field is often

characterized by three length scales. They are: the sys-

tem length, LS, the diffusion length, LD 

ffiffiffiffiffiffiffiffi
D0s

p
, and the

dephasing length, Lg 
 ðD0=cgÞð1=3Þ. The diffusion length

is a measure of the distance traveled by a spin in the half

echo time s. The dephasing length is the length over
which a spin has to diffuse to dephase by 1 rad. In this

way, these three length scales will be needed to com-

pletely describe the diffusion problem. Therefore, we

reduce the number of parameters from three to two,

which is an important improvement that makes the

problem much more straightforward.

Three relaxation regimes based on the smallest length

scales are identified and their governing analytical
equations are given in the literature. A brief summary of

these analytical results is given below, where the original

analytical equations are expressed in our newly defined

parameters: D� and s�.

4.1. Free diffusion regime

LD is the smallest of the three length scales. Spins are
undergoing unrestricted, free diffusion (applies only to

the shortest times), as described by Hahn�s formula [13]:

M̂M�ðt�Þ ¼ e�ð2=3ÞnD�s�3 : ð7Þ
When considering short times after a few spins make

contact with the pore walls, Hahn�s formula needs to be

corrected to the first order due to the wall effect [7,10]:



Table 1

Boundaries from equalizing length scales

Boundary between Criteria Boundary

Free diffusion and

motionally averaging

LD ¼ LS log10 s� ¼ � log10 D
�

Free diffusion and

localization

LD ¼ Lg log10 s� ¼ � 1
3
log10 D

�

Localization and

motionally averaging

Lg ¼ LS 0 ¼ log10 D
�

Fig. 4. Boundaries between different relaxation regimes by equalizing

length scales. The free diffusion regime, region BCDO, has the smallest

LD; the localization regime, region ABOG, has the smallest Lg; the
motionally averaging regime, region GODEF, has the smallest LS.
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M̂M�ðt�Þ ¼ e�ð2=3ÞD�s�3 nþCðnÞ
ffiffiffiffiffiffiffi
D�s�

p½ �; ð8Þ
where CðnÞ is a numerical constant depending on the

echo number n.

4.2. Localization regime

Lg is the smallest of the three length scales. The main
characteristic of this regime is that the net signal comes

principally from the spins which are within one deph-

asing length of the boundaries. The attenuation of nu-

clear magnetization in this regime is given by [7,10,12]:

M̂M�ðt�Þ ¼ pðnÞD�3e�a1nD
�1
3
s�

; ð9Þ
where a1 ¼ 1:0188. The numerical constants pðnÞ are:

pðnÞ ¼ 2Cn
1Real C2

2

C2

C2

� �modðn;2Þ" #
;

where C1 ¼ 1:31477 and C2 ¼ 1:44545� 0:387306 � i.
These pðnÞ values are for the values of the gradient away
from the branch points [14].

4.3. Motionally averaging regime

LS is the smallest of the three length scales. The spins

typically diffuse several times the pore size, and any

magnetic field inhomogeneities are averaged out by their
motion. The signal decays according to [7]:

M̂M�ðt�Þ ¼ exp

�
� n
60

s�

D� � 1

�
� 17

112

2nþ 1

3n
1

D�s�

��
:

ð10Þ

5. Boundaries from equalizing length scales

Since the most distinct attribute of each relaxation

regime is which length scale is the smallest, we derive the

boundaries between different relaxation regimes based

on this criteria. As illustrated in Fig. 4, three lines, that

correspond to the equality between any two length scales

(Table 1), divide the ðlog10 D�; log10 s�Þ domain into six
regions and they intersect at point Oð0; 0Þ (in log–log

scale). The inequality of the three length scales for each

region is shown on the figure. Region BCDO has LD as

the smallest length scale, so it is the free diffusion regime.

Region ABOG has Lg as the smallest, so it is the locali-

zation regime. Region GODEF has LS as the smallest, so

it is the motionally averaging regime. The boundaries

between different regimes are marked as solid lines, while
dashed lines are extension of these boundaries.

6. Numerical vs. analytical with boundaries from equal-

izing length scales

In Section 4, we listed the analytical equations (Eqs.

(7)–(10)) that describe the three asymptotic regimes of
relaxation. In this section we will compare our numeri-

cal simulation results with each of them. Contour lines

of T �
2 from analytical equation will be shown only for

the region where it applies and in the central main plot,

while the numerical simulation results will be shown for

comparison at the corner.

For the free diffusion regime, in Fig. 5, numerical
simulation shows that contour lines of T �

2 curve up at

largerD�, while analytical equation predicts straight lines

throughout the whole region. In Fig. 6, numerical result

and analytical solution do not match near the boundary

OD. Close observation reveals that numerical simulation

predicts curving-up points at smaller D� values.
For the localization regime, there is an apparent

discrepancy between the numerical result and analytical
solution, as shown in Fig. 7.

For the motionally averaging regime, numerical re-

sult and analytical solution match with each other very

well, as shown in Fig. 8.
7. Adjustment of boundaries between relaxation regimes

The discrepancies between numerical result and an-

alytical solution observed for the free diffusion and lo-

calization regimes prompt us to examine the validity of



Fig. 6. Contour lines of T �
2 from Eq. (8) plotted for region BCDO vs.

numerical results shown at the upper right-hand corner.

Fig. 7. Contour lines of T �
2 from Eq. (9) plotted for region ABOG

Fig. 5. Contour lines of T �
2 from Eq. (7) plotted for region BCDO vs.

numerical results shown at the upper right-hand corner.
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the boundaries between different relaxation regimes.
Furthermore, it appears that the large D� portion of the

localization regime of the numerical result is an exten-

sion of the motionally averaging region.

Let us express the analytical equations in the same

form as the numerical simulation:

M̂M�ðt�Þ ¼ e
� t�

T�
2 ;

where t� ¼ 2ns� and T �
2 is the dimensionless relaxation

time.

Then, for the free diffusion regime, we have:

1

T �
2

¼ 1

3
D�s�2: ð11Þ

For the localization regime, rearrange Eq. (9) to have:

M̂M�ðt�Þ ¼ 2Real C2
2

C2

C2

� �modðn;2Þ" #
D�3e

lnC1
2s� �1

2
a1D

�1
3

� �
t� :

ð12Þ
When the Lg is the smallest length scale, the term

ðlnC1Þ=2s� is usually small compared with 1
2
a1D�1=3 (see

Appendix A for details). Therefore, 1=T �
2 can be ap-

proximated as:

1

T �
2

¼ 1

2
a1D�1

3: ð13Þ

For the motionally averaging regime, by ignoring the

second term of the exponent in Eq. (10) (justifiable by Fig.

8 where it can be observed that the dimensionless relax-

ation rate is independent of s� for most of the region), the

dimensionless relaxation rate can be expressed as:

1

T �
2

¼ 1

120D� : ð14Þ
vs. numerical results shown at the lower right-hand corner.



Fig. 8. Contour lines of T �
2 from Eq. (10) plotted for region GODEF vs. numerical results shown at the lower left-hand corner.

Fig. 9. Adjusted boundaries between different relaxation regimes. They

are derived by equalizing T �
2 .
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Thus, the boundary between the free diffusion regime

and the localization regime can be solved by equalizing

Eqs. (11)–(13) as:

log10 s� ¼ � 1

3
log10 D

� þ 0:0921: ð15Þ

Similarly, the boundary between the localization re-

gime and the motionally averaging regime, derived from

equalizing Eq. (13) to Eq. (14), is:

log10 D
� ¼ �1:3397 ð16Þ

and that between the free diffusion regime (Eq. (11)) and

the motionally averaging regime (Eq. (14)) is:
log10 s� ¼ � log10 D
� � 0:801: ð17Þ

Fig. 9 illustrates the adjusted boundaries derived

from equalizing T �
2 . Boundary O0B0 has a slope of )1/3,

O0D0 a slope of )1, and O0G0 a vertical line. They in-
tersect at point O0 ()1.3397, 0.5387). Table 2 summa-

rizes the results.
8. Numerical vs. analytical with boundaries from equal-

izing T�
2

With new boundaries derived from equalizing T �
2 ,

numerical simulation is compared with analytical solu-

tion in Fig. 10. The upper plot is the contour lines of T �
2

determined from the numerical simulation, while the

four lower plots are those calculated from each analyt-

ical equation shown only within the newly derived

boundaries of each relaxation regime.

Eq. (7) is for the free diffusion regime where contour

lines of T �
2 are straight lines with slope �1=2. By com-

paring with the numerical simulation results, it can be

concluded that the straight line portion of the numerical

results matches very well with the analytical solution.

Eq. (8) of the free diffusion regime is the first order

correction to Eq. (7) to account for the partial wall effect.

At smallerD�, the straight line part of Eq. (8) is similar to

that of Eq. (7) but with a slope not exactly equal to�1=2.
Then at larger D�, the contour lines begin to curve up.
Numerical results match the analytical solutions.

For the localization regime, sparsely spaced and

wiggling contour lines are both observed on the nu-

merical simulation results and the analytical solutions.



Table 2

Boundaries from equalizing T �
2

Boundary between Criteria Boundary

Free diffusion and motionally averaging Eq. (11) ¼ Eq. (14) log10 s� ¼ � log10 D
� � 0:801

Free diffusion and localization Eq. (11) ¼ Eq. (13) log10 s� ¼ � 1
3
log10 D

� þ 0:0921

Localization and motionally averaging Eq. (13) ¼ Eq. (14) log10 D
� ¼ �1:3397

Fig. 10. Comparison of numerical simulation results with analytical solutions with new boundaries derived from equalizing T �
2 .
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Numerical results and analytical solutions also match

very well for the motionally averaging regime by ex-

hibiting nearly vertical contour lines of T �
2 .

In a word, numerical simulation results match well

with the analytical solutions with the adjusted bound-

aries. Although each analytical solution is valid only in a

limited region, the numerical simulation predicts relax-
ation time for every region in the ðlog10 D�; log10 s�Þ
domain. Therefore, one figure from numerical simula-

tion suffices four figures from analytical analysis.
9. Branch point effect in the localization regime

From Fig. 3, it can be observed that the contour lines

of T �
2 have a wiggling form and changes with echo

number for the localization regime. Similar behavior

was observed by other researchers [10,14] who have

found that oscillations in the echo signal become large
near branch points.

Briefly speaking, with magnetic field gradient g ¼ 0,

the eigenvalues of the diffusion problem, Eq. (5a), are



Fig. 11. Vertical branch point lines on the ðlog10 D�; log10 s�Þ domain.
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real. As g increases along the positive real axis, eigen-
values shift, and successive pairs of the real-valued ei-

genvalues coalesce at branch points to form complex

conjugate pairs. The branch points occur at special

values of the gradient, which in our notation, corre-

spond to certain values of D�, i.e., log10 D
� ¼ ½�1:257

�2:363 �2:829 � 3:123 � 3:358 � 3:522 � 3:667�.
Fig. 11 plots these vertical branch point lines on

the ðlog10 D�; log10 s�Þ domain. Note that the localiza-
tion regime is densely distributed with branch point

lines.
Fig. 12. Relaxation rate vs. half echo spacing on a log–log plot. Straight lines

for motionally averaging regime.
10. Application: determination of D0 and LS

The numerical simulator, together with the analytical

equations, can be used to determine fluid diffusivity and

pore length for systems relaxing at different relaxation

regimes.

Fig. 12 plots 1=T �
2 over a range of s� on a log–log

scale at fixed D�. Six solid lines are for smaller log10 D
�

values of [)4 )3.5 )3 )2.5 )2 )1.5]. As s� increases (at
fixed D�), nuclear magnetization first relaxes in the free

diffusion regime then in the localization regime. So at

smaller s�, straight lines with slope 2 are observed, then

at larger s� wiggling curves are seen. Three dashed lines

are for intermediate log10 D
� values of [)1 )0.5 0]. They

are in the transitional region between the free diffusion

regime and the motionally averaging regime. So, they

are first straight (slope 2) and then gradually level off.
Four dotted lines are for larger log10 D

� values of [0.5 1

1.5 2]. Magnetization relaxes in the motionally averag-

ing regime and the relaxation rate is independent of s�.
Therefore, horizontal lines are observed.

In practical applications, T2 measurements at different

echo spacings with an applied constant gradient are

often performed. So alternatively, 1=T2 (note: only

consider the relaxation rate due to diffusion mechanism)
can be plotted over a range of s on a log–log scale. The

only difference of such plot from Fig. 12 will be a

translational shift (by the amount of log10 t0) of the

curves while keeping the same shape. Depending on the

shape of the curves, fluid diffusivity, D0, and system

length, LS, can be determined as follows:
with slope 2 are observed for free diffusion regime and horizontal lines
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1. If a straight line with slope 2 is observed, magne-
tization decays in the free diffusion regime. From the

analytical Eq. (11), the dimensionless relaxation rate is:

1

T �
2

¼ 1

3
D�s�2:

Thus, fluid diffusivity can be determined from T2, half
echo spacing s, and tool gradient G as :

D0 ¼
3

T2ðcsGÞ2
: ð18Þ

2. If a horizontal line is observed, then magnetization
decays in the motionally averaging regime as described

by Eq. (14):

1

T �
2

¼ 1

120D� :

Therefore, the system length can be determined from

D, tool gradient G, and T2 as:

LS ¼
120D0

c2G2T2

� �1
4

: ð19Þ

3. If magnetization decays in the transitional region,

then numerical simulator is needed. Just as the analyti-

cal Eqs. (11) and (14) where T �
2 is explicitly expressed as

a function of D� and s�, numerical simulator implicitly

expresses T �
2 as a function of the same two parameters.

Thus in principle, both D0 and LS can be determined in
the transition region.
11. Conclusions

A numerical method for simulating CPMG with self-

diffusion was systematically developed. The parameter

space that defines the relaxation process can be reduced to
two dimensionless groups: D� and s�, instead of three

characteristic length scales. Three relaxation regimes: free

diffusion, localization, and motionally averaging regimes

are identified in the ðlog10 D�; log10 s�Þ domain.Numerical

simulation shows that the dimensionless normalized

magnetization M̂M� relaxes single exponentially with a

constantdimensionless relaxation timeT �
2 formost regions

of the parameter space except for the localization regime.
This result is consistent with the analytical solution.

The analytical and numerical solutions are compared

from the contour plots of T �
2 . With boundaries derived

from equalizing length scales, discrepancies are observed

for free diffusion and localization regimes. However, with

adjusted boundaries derived from equalizing T �
2 , analyt-

ical and numerical solutions match each other very well

for every relaxation regime. Each analytical equationonly
describes relaxation process in a certain regime, while one

numerical simulation covers all three relaxation regimes.

The parameters, fluid diffusivity and pore length, can

be estimated from analytical solutions in the free diffu-

sion regime and in the motionally averaging regime,
respectively. Estimation of these parameters in the
transitional regions will require the numerical simulator.
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Appendix A

In order to ignore the first term of the exponent in

Eq. (12), ðlnC1Þ=2s�, it is required that

lnC1

2s�
� 1

2
a1D�1=3;

where C1 ¼ 1:31477 and a1 ¼ 1:0188.
This gives

s�D�1=3 � lnC1

a1
¼ 0:2686:

It is equivalent to

log10 s� � � 1

3
log10 D

� � 0:57: ðA:1Þ

Because the localization regime is above the free
diffusion–localization boundary (Eq. (15)) at

log10 s� ¼ � 1

3
log10 D

� þ 0:0921;

it automatically satisfies the requirement as stated in Eq.
(A.1) Therefore, the term, ðlnC1Þ=2s�, can be ignored

from the exponent in Eq. (12).
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